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Abstract
Thermal transient data collected to characterize

packaged semiconductor devices is often acquired from a
number of individual samples that then must be averaged
together. Yet each individual transient curve has a relatively
large experimental uncertainty, which is usually a
combination of unmeasurable initial transient thermal
response (related to electrical transients that cannot be
separated from the thermal signal), coupled with mounting
variability not fairly attributable to the device itself being
tested (but is rather due to differences in test board
characteristics, solder thickness variation, etc.). When a
limited range of the data is believed to accurately represent
device−only dependence, a useful, simple, yet rigorous
method has been developed to allow the analyst to minimize
the scatter in the data set, while preserving the average value
in the specified range. Application of this method to actual
data is presented for purposes of illustration, and additional
implications in the use of the method are discussed.
Although this method was developed and is applied here in
the context of thermal transient characterization, it is
universal in potential application; the underlying
mathematical “theorem” is completely general.
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Glossary of Symbols
E pooled variance of entire data set

ijT original, unshifted data values

iT mean of the original, unshifted data values for device i

T mean of the entire set of original, unshifted data values

theta thermal resistance or normalized junction temperature,
defined as (junction temperature − ambient)/power

xi general data variable for statistical formulas

Greek Symbols

i
� offset by which entire data set for a device is shifted
μ mean value of a population
σ standard deviation of a population

j
σ standard deviation of population j

2σ variance of a population

Subscripts
i, j data set indices and expressions
m number of time steps over which data is correlated
n number of devices for which data is correlated

INTRODUCTION

Accurate thermal transient measurements at very short
time scales are a challenge for various reasons [1][2][3].
When a cooling curve technique is used for measurements,
there is a glaring deficiency in the process. Purportedly
identical devices will never start at the same normalized
temperature (that is, steady state thermal resistance, or
theta), mainly due to mounting variations between devices,
random variations in ambient conditions, and to a much
lesser extent, actual manufacturing variation within the
devices.
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Figure 1. Typical Transient Cooling Data

10 curves of “self−heating”
data 5 sample devices,
2 channels each)

10 curves of 
“interaction” data 
5 sample devices,
2 channels each)

Figure 1 illustrates a typical set of thermal transient
cooling curves, obtained by testing five samples of a
particular dual−rectifier device. Each of the two channels in
turn, of each sample, was heated until steady state was
reached. Then, power was turned off and both channels were
measured as the entire device cooled back to ambient. The
essential goal is to measure the overall thermal transient
resistance of the device. It is somewhat complicated in this
case by the fact that we are also interested in the indirect or
“interaction” heating of each channel on the other, yet from
the raw data in Figure 1, the difference between the channels
(or even that there is a meaningful difference) is not entirely
obvious. Ultimately we might use this data to generate a
two−input thermal RC network representing the thermal
performance of the device, enabling a customer to do
dynamic modeling of the two junction temperatures when
the device is heated asynchronously and asymmetrically.
Before we do, however, we should prefer to have more
confidence that the “signal” present in the data is worth the
effort.

This monograph develops a general method of
minimizing the scatter between an arbitrary number of data
sets, while preserving the original mean values. It turns out,

in fact, that a benefit of applying this technique to the
specific case of thermal transient data, is identifying when
there is a “flyer” in the group. Without this data analysis
technique, due to the intrinsic variability in the measurement
methodology, normal scatter often overwhelms the signal of
internal variation.

Basic Idea
The basic idea is that one has an extended set of correlated

data points for which the average values are presumed to
have some statistical validity, but are believed to reflect,
between the various individual subsets of data, some random
offsets. For example, we have a set of transient cooling theta
measurements for a particular device, which we want to
statistically match up with a similar set of measurements for
a supposedly identical device. Let us say we have a total of
n devices, all presumed identical, and for each of these we
have made transient cooling measurements over the same
series of m time steps. The problem is that due to mounting
variations, each device started at a somewhat different initial
steady state theta, which is necessarily unknown. We’d like
to see just how exactly these data sets can be made to overlay
each other over those m points, simply by adjusting the
relative position of the sets with respect to each other, yet not
shifting the overall mean value of the sets.

Consider first a trivial case where the procedure results in
a unsurprisingly trivial conclusion. Table 1 presents five
“sets” of data, each set consisting of one theta measurement
taken at the same time of 0.001 second.

How can these data sets be shifted so as to maintain this
original average value, yet minimize the “scatter”? Pretty
clearly, if set #1 shifts +2°C/W, set #2 by +1°C/W, set #3
stays put, set #4 shifts −1°C/W, and set #5 by −2°C/W, then
all five sets will end up at a value of 3°C/W, and the standard
deviation will be the minimum possible: 0°C/W!

Is the problem always this trivial? Certainly not. Table 2
extends the data “sets” of Table 1 with additional points for
each of these five devices at a time value of 0.002 second.
Now, in addition to the standard deviation for each
individual time, we should compute the pooled standard
deviation for these sets from the standard deviations of the
individual time points, namely:

1
2

(1.582 � 0.792)� � 1.25

Table 1. Hypothetical Cooling Data at 0.001 s

Time
Seconds

Device 1
�C/W

Device 2
�C/W

Device 3
�C/W

Device 4
�C/W

Device 5
�C/W

Average
�C/W

Std. Dev
�C/W

0.001 1.0 2.0 3.0 4.0 5.0 3.0 1.58
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Table 2. Hypothetical Cooling Data at 0.001 s and 0.002 s (pooled s. d. of 1.25)

Time
Seconds

Device 1
�C/W

Device 2
�C/W

Device 3
�C/W

Device 4
�C/W

Device 5
�C/W

Average
�C/W

Std. Dev
�C/W

0.001 1.0 2.0 3.0 4.0 5.0 3.0 1.58

0.002 1.0 1.5 2.0 2.5 3.0 2.0 0.79

Table 3. Hypothetical Cooling Data with Initial Offsets (pooled s. d. of 0.56)

Time
Seconds

Device 1
�C/W

Device 2
�C/W

Device 3
�C/W

Device 4
�C/W

Device 5
�C/W

Average
�C/W

Std. Dev
�C/W

0.001 3.0 3.0 3.0 3.0 3.0 3.0 0.00

0.002 3.0 2.5 2.0 1.5 1.0 2.0 0.79

Table 4. Hypothetical Cooling Data with Minimum−Scatter Offsets (pooled s. d. of 0.40)

Time
Seconds

Device 1
�C/W

Device 2
�C/W

Device 3
�C/W

Device 4
�C/W

Device 5
�C/W

Average
�C/W

Std. Dev
�C/W

0.001 2.5 2.75 3.0 3.25 3.5 3.0 0.40

0.002 2.5 2.25 2.0 1.75 1.5 2.0 0.40

Intuitively, we see now that these devices didn’t simply
start at different steady state thetas, they appear to have
cooled at different rates. No amount of shifting entire data
sets up or down can change this basic character.
Nevertheless, our “rule” or premise in this data−shifting
algorithm is that all points for a specific device have to shift
by the same amount, so if we were to apply those obvious
shifts from the first trivial scenario to this larger set of points,
we’d obtain the values shown in Table 3. And now the
pooled standard deviation is 0.56 − definitely lower. But is
this the best that can be done?

What if we use shifts of 1.5, 0.75, 0, −0.75, and −1.5,
respectively? Table 4 results, with a pooled standard
deviation of 0.40, smaller yet. Indeed, using the approach
that will be developed in this monograph, one can show that
this pooled standard deviation is the minimum possible
value for this given data, and that (without changing the
averages) these offsets uniquely yield this value. Further, it
will be demonstrated that there is always such a set of
offsets.

In this hypothetical introductory problem, we can’t
necessarily convince ourselves that there was much point in
adjusting this data, given our “intuitive” observation that
they don’t seem even to represent the same cooling trends.
However, in a real set of transient cooling curves which span
several orders of magnitude of time, and a wide range of
transient theta from a heated equilibrium to a final ambient
equilibrium (Figure 1), a great deal can be learned about the
similarities (or differences) between the individual device
characteristics by utilizing the technique outlined herein,
and by restricting our attention to different subsets of the
time data for different purposes.

The Method
With the foregoing illustration in mind, let us now get

mathematically precise. First, we are going to deal with m
sets (the time steps above) of n correlated data points each.
We shall designate this data as:

Tij

where i denotes the device and j denotes the time step. For
each device i, we will shift its entire set of points by some
common offset εi. So a little more exactly, we are interested
in discovering the following shifted sets of values:

Tij � �i

Now recall the definitions for the mean and variance of a
population of xi data values:

mean � � 1
n�

n

i�1

xi variance �2 � 1
n�

n

i�1

(xi � x)2

substituting for � into σ2 , and with a little juggling, yields
the standard alternative form:

�2 � 1
n��n

i�1

xi2 � 1
n��n

i�1

xi	2

Thus we can write the variance of the jth set of shifted values
(i.e., over the n devices at a common time step j) as:

�j2 � 1
n��n

i�1

(Tij � �i)2 � 1
n��n

i�1

Tij � �i	2
 (eq. 1)



AND8216/D

http://onsemi.com
4

and we can write the pooled variance of the entire set of data
over all the specified time steps as:

� � 1
m�

m

j�1

�j2

(eq. 2)

� 1
m�

m

j�1

1
n��n

i�1

(Tij � �i)2 � 1
n��n

i�1

Tij � �i	2

Our goal is to minimize the pooled variance with respect

to the adjustable offsets �i, which means that we must take
the derivatives of (2) with respect to each of them.

Because of the various summations and non−linear terms,
execution of the differentiation process is not entirely
obvious or straightforward. To ensure that the correct results
are obtained, it is useful first to expand the terms of (2)
somewhat, as follows:

���3
i

	2
2 �
(eq. 3)

1
m�

m

j�1

1
n��n

i�1

(Tij2 � 2Tij�i � �i 2) � 1
n��n

i�1

Tij ��
n

i�1

�i	2

� 1

m�
m

j�1

1
n��n

i�1

(Tij2 � 2Tij�i � �i2)

� 1
n���n

i�1

Tij	2
� 2�

n

i�1

Tij�
n

i�1

�i ���n
i�1

�i	2


� �

Differentiation begins simply by pushing the differential
operator through the outer summation:

���3
i

	2
2 �
(eq. 4)

�
�i

� 1
m�

m

j�1

1
n


�i
��n

i�1

(Tij2 � 2Tij�i � �i2)

� 1
n���n

i�1

Tij	2
� 2�

n

i�1

Tij�
n

i�1

�i ���n
i�1

�i	2

The next step, and probably most crucial to understand

clearly, is to realize that the derivative of the first inner
summation will, in fact, eliminate the summation itself,
leaving only two individual terms in �i − likewise the second
summation vanishes. This is because if the summations are
explicitly expanded (i.e., we list separate terms for each of
�1, �2, �3, etc.), only the specific terms for index i result in
a contribution to its specific derivative.

To illustrate:

(eq. 5)


�i
�

n

i�1

2Tij�i �

�i

(2T1j�i ����� 2Tij�i ����� 2Tnj�n)

� (0 ����� 2Tij ����� 0)� 2Tij

similarly:

(eq. 6)
�i
�

n

i�1

�i2 � 
�i

(�12 ����� �i2 ����� �n2)� 2�i

Likewise, for the derivative of the product of the two
summations (the first being constant):

(eq. 7)


�i
��n

i�1

Tij�
n

i�1

�i	 ��
n

i�1

Tij �

�i
��n

i�1

�i	
��

n

i�1

Tij �

�i

(�1 ����� �i ����� �n)

��
n

i�1

Tij

and, using the chain rule and following similar reasoning,

(eq. 8)
�i
��n

i�1

�i	2
� 2��n

i�1

�i	 
�i
��n

i�1

�i	� 2�
n

i�1

�i

Note the significant difference between (6) and (8)!

Finally, all the other terms (consisting of expressions
involving purely Tij) go away directly, simply because they
are constants with respect to the �i, leaving the final result:

(eq. 9)

�
�i

� 1
m�

m

j�1

1
n�2Tij � 2�i �

1
n�2�n

i�1

Tij � 2�
n

i�1

�i
�
� 1

m
1
n 2�

m

j�1

��i � 1
n�

n

i�1

�i � Tij �
1
n�

n

i�1

Tij�
When we then set these derivatives to zero, we can

multiply out the initial constants and end up with the
following system of equations in �i:

(eq. 10)0 ��
m

j�1

��i � 1
n�

n

i�1

�i � Tij �
1
n�

n

i�1

Tij�
Noting that the outer summation over m simply creates m

multiples of the �i terms, we have:

(eq. 11)0 � m��i � 1
n�

n

i�1

�i	��
m

j�1

�Tij �
1
n�

n

i�1

Tij	
or, moving the �i to the left side of the equation, dividing
through by m, and recombining the Tij terms slightly:

(eq. 12)�i �
1
n�

n

i�1

�i �
1
m

1
n�

m

j�1

�
n

i�1

Tij �
1
m�

m

j�1

Tij

A careful inspection of the two terms now on the right
leads to the realization that the first (double) summation is
exactly the overall average of the entire original set of
unshifted values (that is, a meta−average over all devices
and over all time steps). The second term is the average of
the set of unshifted values for device i alone (over those same
time steps of interest). Thus, with hopefully obvious
symbolism, we could write:

(eq. 13)�i �
1
n�

n

i�1

�i � T � Ti

a rather simple statement of the solution considering what
we’ve gone through to it! Incredibly, it gets even simpler
(though we’ll have to backtrack a little before all
implications have been fully studied).
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Recall our original stipulation that the averages of the
individual data sets do not move, in spite of the offsets.
Stated mathematically, we thus require:

(eq. 14)1
m�

m

j�1

1
n��n

i�1

(Tij � �i)
 � 1
m�

m

j�1

1
n��n

i�1

Tij

This is equivalent to the statement that the sums of the

offsets must be zero (which can be seen by separating out the
Tij’s from the �i’s, and subtracting the common terms from
both sides of the equation), viz.:

(eq. 15)�
n

i�1

�i � 0

Plug that into Equation 13, and presto!, we have this final
expression:

(eq. 16)�i � T � Ti
This is a fully determinate set of equations for each of the

�i , completely symmetric in i (as we should have expected),
and they aren’t even coupled to each other! Perhaps
unbelievable, considering the completely general version of
the solution back in (13). After all, we had i coupled
equations in exactly i unknowns, and our intuition should tell
us that if all the offsets are free to shift, there should be no
unique solution which yields the minimum scatter. To put it
another way, if you did find some set of offsets which
resulted in the minimum scatter, and then you changed all
the offsets together by some common amount, although the
sets of shifted values would certainly move, the scatter
between them would not change compared to what it was
before the common shift. If this is so, how could it be that we
so easily came up with (16), which gives no hint of
indeterminacy?

To understand completely, we must revisit (13) in light of
some fundamental principles of linear algebra. One of these
is expressed as Theorem 3.1 (ref [4]):

If one system of equations can be obtained from
another system by a sequence of elementary
operations, then the two systems are equivalent.

Further, one of the elementary operations that can be
performed (in accordance with this theorem) is:

The ith equation is replaced by the sum of the ith and
p times the jth equation (i � j).

By applying this elementary operation repeatedly to any
one of the original equations, successively adding in to it all
of the other equations (each with a multiplier of 1), we can
create the following “secondary” operation:

The ith equation is replaced by the sum of all the
original equations.

So consider what happens when we apply this operation
to our original set. In fact, let’s back up to (12), rather than
(13), so as to skip the (merely convenient) intermediate
definitions of the average values. We again remind ourselves
that the summation of a constant argument over n times,
reduces to simply n times the argument; therefore once an
argument has been summed over a dependent index,
re−summing it over that same index is equivalent to
summing a constant argument. Thus:

(eq. 17)

�
n

i�1

��i � 1
n�

n

i�1

1
n �i	 ��

n

i�1

�1
m

1
n�

m

j�1

�
n

i�1

Tij �
1
m ��

m

j�1

Tij	
�

n

i�1

�i �
1
n�

n

i�1

�
n

i�1

�i �
1
m

1
n�

n

i�1

�
m

j�1

�
n

i�1

Tij �
1
m�

n

i�1

�
m

j�1

Tij

�
n

i�1

�i �
1
n � n�

n

i�1

�i �
1
m

1
n � n�

m

j�1

�
n

i�1

Tij �
1
m�

n

i�1

�
m

j�1

Tij

�
n

i�1

�i ��
n

i�1

�i �
1
m��m

j�1

�
n

i�1

Tij �
1
m�

n

i�1

�
m

j�1

Tij	
0 � 1

m (0)

0 � 0
Since elementary operations on our set of equations can be

used to generate an identity, we can therefore state that the
original set of equations was indeterminate. And our
constraint (15), namely, that the sum of the offsets equal
zero, can therefore be viewed as nothing more than
supplying sufficient, linearly independent information, to
turn the indeterminate set of i−1 equations (in i unknowns),
into the fully determinate set derived as (16).

The “Toy” Problem
We are now ready to return to the hypothetical data

presented in Tables 1 and 2. In Table 1, m is but 1. Now (16)
confirms what was already obvious, to wit: for minimum
scatter, each device measurement needs to be shifted by the
difference between its raw value, and the average of the
entire set of devices. That’s exactly what we did, and of
course, the resulting scatter was identically zero. Indeed, this
will be the case anytime there is no variation over time,
regardless of how large m is. For the more complicated case
of the Table 2 data, however, we could see that we didn’t get
the optimal scatter simply by using the same offsets as were
trivially obvious for the data of Table 1. In Table 5, it is now
evident that the offsets that were used to generate the shifted
data of Table 4 are those arising from (16); therefore they
produce the optimal, minimum scatter for this data.

Applying these shifts returns us immediately to the results
of Table 4. Note that the “average” shift is zero, which of
course also means that the sum of the shifts is zero, as it
should be.
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There is one remaining point to be made. Recall that (16)
was derived beginning with the definition of population
variance. It will be left as an exercise for the reader to prove

that the same optimal shifts arise if the formula for the
sample variance had been used, where n−1 appears in the
denominator of the definition, rather than n.

Table 5. Averages and Resulting Optimal Offsets Using (16)

Time Device 1
�C/W

Device 2
�C/W

Device 3
�C/W

Device 4
�C/W

Device 5
�C/W

Average
�C/W

0.001 1.0 2.0 3.0 4.0 5.0 3.0

0.002 1.0 1.5 2.0 2.5 3.0 2.0

Avg 1.0 1.75 2.5 3.25 4.0 2.5

Shift 1.5 0.75 0 −0.75 −1.5 0.0

Application to Real Data
We now apply the scatter minimization technique so

succinctly expressed as (16) to the real data originally shown
in Figure 1. There are twenty individual curves. Ten
represent “heated” channels (five of which are channel #1 on
each test device, and five of which are channel #2 on each
test device). Ten curves are the “unheated” channels,
likewise split between the two channels of each of five test
devices. Because the device is physically and geometrically
symmetric between the two channels, through the following
discussion we will in general always group together the five
curves of channel 1 with the corresponding five curves of
channel 2, based on their being heated or unheated. In some
cases, we will average together all twenty curves of data.

What we should first like to do is simply minimize the
scatter over our entire data set. Equation 16 says, essentially:

(a) compute the average value of each cooling curve;
(b) compute the average of the averages, and then (c) shift
each curve up or down according to how much its average
deviates from the meta−average. Figure 2 results.

The data immediately becomes much more clear. The
technique has obviously eliminated some sort of systematic
“error” which causes one set of data to drift with respect to
another. Even now, without having explicitly separated the
heated channel data from the unheated channel data, we see
a systematic separation of the curves. Before we deal with
this issue, however, note the overall pooled standard

deviation for the entire set of twenty curves: taking the
standard deviation individually at each point in time, then
pooling over the entire time history, we obtain 1.74°C/W.
After we have minimized the scatter globally, this figure has
been reduced to 0.98°C/W.
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Figure 2. Scatter Minimized Over 0.0001−630 s
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Next, we would like address the problem of the heated vs.
unheated channels, and see just how different they really are
from each other. We begin by making the assumption that all
our devices are internally identical, and therefore “force” the
minimum scatter very early in the data streams. We also
recognize that the heated and unheated channels should not
behave identically, thus we shall keep two separate
meta−averages, one for the heated, and one for the unheated
channel. From, say, 0.0005−0.001 s, there should be in
theory only die, and possibly to a limited extent, die attach,
material property contributions to the device thermal
characteristics. In this data, we actually have five points
along each curve in this time interval. If we calculate the
pooled standard deviation of each subset of ten curves over
those five time points, we obtain 2.19 and 1.85°C/W for the
heated and unheated sets respectively. (It is also of interest
to note the pooled standard deviations for the heated and
unheated subsets over the entire time range from
0.0001−630 s, were 1.88 and 1.59. In other words, the data
over the “short time” range is superficially somewhat more
“noisy” than the overall data sets.)
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Figure 3. Scatter Minimized Over 0.0005−0.001 s

10 curves of “self−heating”
data 5 sample devices,
2 channels each)
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“interaction” data 
5 sample devices,
2 channels each)

minimization
region

If we now apply Equation 16 to the five points of data of
die timescale interest, we obtain the adjusted graph shown
in Figure 3. The minimized pooled standard deviations for
the heated and unheated curves have dropped dramatically
to 0.32 and 0.12°C/W. The difference between the heated
and unheated channels is now very clearly much more
significant than the basic “noise” in the measurements might
have suggested. Although we could have simply averaged
the data sets and compared the averages, we would have had
no assurance that the separation between the averages was
statistically significant. (Indeed, the pooled standard
deviations would have told us it was not.)

On the other hand, we have traded off clarity of short−time
behavior for obfuscation of the long−time data. Let us
therefore apply the error minimization technique to the data
over the range of, say, 10 through 630 s, where our physical
intuition (and the gross appearance of the plotted data)
suggests that all five test boards (and both heated and
unheated channels) ought to share identical behavior. Here
again, all twenty curves are treated as a single group (rather
than two individual sets of ten curves), and Figure 4 results.
The pooled standard deviation over the time period of
interest is only 0.31°C/W. Thus, the composite noise of the
ten curves is actually modestly better than that of the
individual channels in the first half millisecond.

Observing that the original unminimized scatter over the
10−630 s range was only 0.62 (considerably less than that of
the entire data sets from 0.0001−630 s), we now have clear
evidence that the devices behave very much as identically to
each other during the short time scale, as do the test boards
to each other at the long time scale. Yet the overall standard
deviation of the entire data sets is much poorer than at either
limited end range. Our conclusion, then, is that something
between the “die” level and the “board” level is different
between the various individual curves. We could not see this
at the outset, because the variations that evidently are due to
some intermediate timescale differences are compounded
into the short−time data merely through the cooling curve
experimental methodology.
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Can we learn any more? So far, we believe from
theoretical considerations that there should be a real
difference in the heated vs. unheated families of curves at the
short time, yet by the time steady state is reached, there
should be no difference. The ability to minimize the scatter
at the two extreme ends of the curves confirms this.
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However, the differences due to package internal variation
should not persist as late at 10 s into the cooling curves.
Inspection of the curves, especially of Figure 3, suggests
that it may be worthwhile to use the error minimization
technique over the time scale of 0.1 − 0.2 s. Figure 5 is what
results, again treating all twenty curves as a single group.
This shows very clearly that if 0.1 s is used as a common
baseline for all devices (irrespective of channel), the
device−to−device variation does not really manifest itself
until about 2 s. This is the timescale at which board
mounting details contribute to the thermal performance of
the system.

In Figure 6, we zoom in on the Figure 5 graph between 0.1
and 10 seconds, and observe that the four curves from
sample #4 of the test group (two heated curves, one for each
channel, and two unheated curves, one for each channel)
split off from the others. If we were so inclined, we could
then pull sample #4 from the batch and study it for physical
explanations for the difference. In any case, even though the
scatter was minimized only up through 0.2 s, the entire
family of curves for all five samples is extremely tight out
through about 2 s.
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Similarly, moving back to times earlier than 0.1 s,
Figure 5 shows that the unheated channels seem to be more
tightly grouped than the heated channels. Since we have
already observed that the intrinsic scatter in these groups is
very similar, this suggests that there is possibly a die−attach
source of variation within the samples, which would
influence the heated channels more than the unheated
channels. Even more detailed inspection of the time scale
prior to 0.0005 s yields evidence that there is a subtle
difference between channel 1 and channel 2 of the samples;
since only die material properties can affect thermal

performance at this early in the cooling curve, we then focus
our attention (if we are concerned), on design differences
between the two channels, or possibly in the thermal cooling
test hardware. Perhaps, for instance, there is a small
difference in inductance in the test leads between the two
channels.
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Figure 6. Board Mounting Timescale
(0.1−10s of Figure 5)

Further Discussion
It may seem at this point that all we have done in this

demonstration of the scatter minimization technique, is
arbitrarily select different time periods over which to apply
the mathematics developed at the outset. Certainly the “toy”
problem had no particular rationale behind it other than the
simple exposition of the method. In the actual
semiconductor device cooling data used as the real−life
illustration, however, the time scales selected were driven
ultimately by the real physics behind the data. Fundamental
considerations of thermal diffusion time for the materials
present in the package, tell us that certain interactions are
possible, and others are not possible. For instance, based on
the thermal diffusivity of silicon and the known thickness of
the die, we can be confident that local thermal disturbances
at the surface of the device cannot possibly propagate to the
back surface of the die (where it interfaces with the next
major component of the package, the leadframe), at a time
scale earlier than a couple of milliseconds. Similarly, based
on the diffusivity of the leadframe material and the lead
lengths, we can be certain that disturbances cannot be
propagated out the leads earlier than a few tens of
milliseconds. We also find, based on molding compound
properties and its overlying thickness, that the heat
conduction upwards from the silicon surface (and indeed,
outwards from every metal−to−compound interface internal
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to the package) is very slow in comparison, hence the
influence of the exterior convecting surfaces of the case does
not come into play so early in the transient curve. On the
other hand, we can see that separate junction regions on the
surface of the silicon will respond to each other on
approximately that time scale.

Looking at it from the other direction, we can argue that
since thermal disturbances can propagate through the die
and leadframe on the order of tens of milliseconds or faster,
then at time scales an order of magnitude longer, the package
must be at local internal thermal equilibrium. Therefore any
macroscopic changes in the temperature of the system (even
though measured at the junction) must be driven by the
external environment, beginning at the interface between
the leads and the board, and continuing on to incorporate the
board properties and convection effects. These domains also
lend themselves to rough estimates of when they may and
may not be significant. For instance, though it was not dwelt
on in this analysis, the distinct “knee” in the cooling curves
at about 5 s corresponds well with the estimated thermal
diffusion time of the 1” square copper heat−spreader plated
on to the thermal test circuit board. Likewise, other rough
estimates of thermal time constants of system components
(lumped RC analysis, for example, see [5]) may also provide
important independent guidance for the selection of time
scales of interest.

Finally, when one compares the data of one test sample vs.
another, or vs. the average of the entire suite of data,
knowing the time scales at which different effects may come
into play permits one to identify whether the sample has a
specific defect and should perhaps not be included in the
average. (The so called “delta−Vbe” tests for die−attach
integrity, well known in the semiconductor manufacturing
business, are a good illustration of the diagnostic power of
associating certain time scales with particular causes.)
Naturally, whether a specific sample is required to be
included in an average has more to do with the purpose
behind the data collection in the first place, and clearly is
outside the scope of this monograph.

What must be understood here is that the scatter
minimization technique cannot magically sift out totally
random experimental variation, and as with most any
statistical tool, it may be abused and improperly applied.

Coupled with independent knowledge of what should be
happening in the system, however, one can intelligently sort
out the likely sources of the variation, and thus optimally
extract the information intrinsically present, although
obscured, in the actual data.

SUMMARY AND CONCLUSION
The scatter−minimization technique developed in this

paper has been demonstrated to yield useful information
about thermal transient experimental results that would
otherwise remain completely obscured by ordinary
measurement variability. For instance, package to package
differences may be brought out clearly (whether internal to
the package, or, as was the case in the data used for
illustration here, external to the package at the
board−mounting interface). Even more significantly,
because thermal transient tests intrinsically provide
information about different physical components of the
thermal system, from test equipment, to die attach, to board
mounting, to board structure, the error minimization
technique allows the experimenter to probe the raw data for
very specific information about the sources of the variation.
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